Search results for " 35B65"

showing 10 items of 15 documents

Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities

2018

We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in $\Omega\subset \mathbb R^n$. The method of the proof is based on a game-theoretic idea to estimate the value of a related game defined in $\Omega\times \Omega$ via couplings.

osittaisdifferentiaaliyhtälötPure mathematicsComputer Science::Computer Science and Game TheoryTug of war010102 general mathematicslocal Lipschitz estimatesLipschitz continuity01 natural sciencesnormalized p(x)-laplaciandynamic programming principle010104 statistics & probabilityMathematics - Analysis of PDEsFOS: Mathematicspeliteoria91A05 91A15 91A50 35B65 35J60 35J92stochastic games0101 mathematicsValue (mathematics)AnalysisAnalysis of PDEs (math.AP)Mathematicsstokastiset prosessit
researchProduct

The p-Laplacian with respect to measures

2013

We introduce a definition for the $p$-Laplace operator on positive and finite Borel measures that satisfy an Adams-type embedding condition.

Discrete mathematicsPure mathematicsApplied Mathematicsta111Mathematics::Algebraic Topology35J92 35P30 35D99 35B65Mathematics - Analysis of PDEsAnalysis on fractalsp-LaplacianFOS: MathematicsEmbeddingLaplace operatorAnalysisMathematicsAnalysis of PDEs (math.AP)Journal of mathematical analysis and applications
researchProduct

p-harmonic coordinates for H\"older metrics and applications

2015

We show that on any Riemannian manifold with H\"older continuous metric tensor, there exists a $p$-harmonic coordinate system near any point. When $p = n$ this leads to a useful gauge condition for regularity results in conformal geometry. As applications, we show that any conformal mapping between manifolds having $C^\alpha$ metric tensors is $C^{1+\alpha}$ regular, and that a manifold with $W^{1,n} \cap C^\alpha$ metric tensor and with vanishing Weyl tensor is locally conformally flat if $n \geq 4$. The results extend the works [LS14, LS15] from the case of $C^{1+\alpha}$ metrics to the H\"older continuous case. In an appendix, we also develop some regularity results for overdetermined el…

Mathematics - Differential Geometry53A30 (Primary) 35J60 35B65 (Secondary)
researchProduct

Remarks on regularity for p-Laplacian type equations in non-divergence form

2018

We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.

viscosity solutionsintegrability of second derivativesType (model theory)01 natural sciencesDivergencelocal C1ViscosityMathematics - Analysis of PDEsFOS: Mathematicspartial differential equations0101 mathematicsMathematicsMathematical physicsosittaisdifferentiaaliyhtälötα regularityApplied Mathematics010102 general mathematicsta111p-Laplacianlocal C1α regularityviskositeettiDegenerate equation35J60 35B65 35J92010101 applied mathematicsviscosityp-LaplacianAnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct

Boundary Regularity for the Porous Medium Equation

2018

We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superpara…

Pure mathematicsComplex systemBoundary (topology)Mathematical AnalysisCharacterization (mathematics)01 natural sciencesMathematics - Analysis of PDEsMathematics (miscellaneous)Matematisk analysporous medium equationFOS: Mathematics0101 mathematicsSpatial domainMathematicsosittaisdifferentiaaliyhtälötDirichlet problemMechanical Engineering010102 general mathematicsDegenerate energy levels35K20 (Primary) 35B51 35B65 35K10 35K55 35K65 (Secondary)010101 applied mathematicsRange (mathematics)boundary regularityPorous mediumAnalysisAnalysis of PDEs (math.AP)Archive for Rational Mechanics and Analysis
researchProduct

Regularity for nonlinear stochastic games

2015

We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic games or discretization schemes. Our results can also be utilized in obtaining regularity and existence results for the corresponding partial differential equations. peerReviewed

viscosity solutionsDiscretization01 natural sciencesMathematics - Analysis of PDEsBellman equationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsApplied mathematicstug-of-war0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsstokastiset prosessitPartial differential equationApplied Mathematics91A15 35J92 35B65 35J60 49N60010102 general mathematicsta111dynamic programming principletug-of-war with noise with space dependent probabilities010101 applied mathematicsNonlinear systemOptimization and Control (math.OC)p-LaplaceAnalysisAnalysis of PDEs (math.AP)
researchProduct

On the interior regularity of weak solutions to the 2-D incompressible Euler equations

2016

We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…

Pure mathematicsIntegrable systemDimension (graph theory)Mathematics::Analysis of PDEsContext (language use)yhtälötSpace (mathematics)01 natural sciencessymbols.namesakeMathematics - Analysis of PDEs35Q31 (Primary) 76B03 35B65 35Q30 (Secondary)weak solutions0103 physical sciencesinterior regularityBoundary value problem0101 mathematicsMathematicsmatematiikkaApplied Mathematics010102 general mathematicsVorticityEuler equationsEuler equationssymbols010307 mathematical physicsAnalysisEnergy (signal processing)Calculus of Variations and Partial Differential Equations
researchProduct

$n$-harmonic coordinates and the regularity of conformal mappings

2014

This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r > 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 < p < \infty$ on any Riemannian manifold.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsSmoothness (probability theory)GeneralizationGeneral MathematicsCoordinate systemta111conformal mappingsConformal map53A30 (Primary) 35J60 35B65 (Secondary)Riemannian manifoldMathematics - Analysis of PDEsDifferential Geometry (math.DG)Metric (mathematics)FOS: MathematicsDiffeomorphismMathematics::Differential GeometryMathematicsAnalysis of PDEs (math.AP)
researchProduct

Gradient and Lipschitz Estimates for Tug-of-War Type Games

2021

We define a random step size tug-of-war game and show that the gradient of a value function exists almost everywhere. We also prove that the gradients of value functions are uniformly bounded and converge weakly to the gradient of the corresponding $p$-harmonic function. Moreover, we establish an improved Lipschitz estimate when boundary values are close to a plane. Such estimates are known to play a key role in the higher regularity theory of partial differential equations. The proofs are based on cancellation and coupling methods as well as an improved version of the cylinder walk argument. peerReviewed

osittaisdifferentiaaliyhtälöt91A15 35B65 35J92gradient regularityApplied MathematicsTug of warMathematical analysisstochastic two player zero-sum gameType (model theory)Lipschitz continuityComputational MathematicsMathematics - Analysis of PDEsLipschitz estimateBellman equationtug-of-war with noiseFOS: MathematicsUniform boundednesspeliteoriaAlmost everywherep-LaplaceValue (mathematics)AnalysisAnalysis of PDEs (math.AP)Mathematicsstokastiset prosessit
researchProduct

$C^{1,��}$ regularity for the normalized $p$-Poisson problem

2017

We consider the normalized $p$-Poisson problem $$-��^N_p u=f \qquad \text{in}\quad ��.$$ The normalized $p$-Laplacian $��_p^{N}u:=|D u|^{2-p}��_p u$ is in non-divergence form and arises for example from stochastic games. We prove $C^{1,��}_{loc}$ regularity with nearly optimal $��$ for viscosity solutions of this problem. In the case $f\in L^{\infty}\cap C$ and $p>1$ we use methods both from viscosity and weak theory, whereas in the case $f\in L^q\cap C$, $q>\max(n,\frac p2,2)$, and $p>2$ we rely on the tools of nonlinear potential theory.

Pure mathematicsnormalized p-laplacianregularitymathematicsp-poisson problemApplied MathematicsGeneral Mathematics010102 general mathematicsta111α01 natural sciences35J60 35B65 35J92Potential theory010101 applied mathematicslocal C1Nonlinear systemViscosityviscosityFOS: Mathematics0101 mathematicsPoisson problemMathematicsAnalysis of PDEs (math.AP)
researchProduct